
02/20/14 Copyright 2014 Stephen Dum 2

Security and OpenSSH

Stephen Dum

Stephen.dum@frontier.com

02/20/14 Copyright 2014 Stephen Dum 3

Overview

Focus – ssh 2 from the linux users perspective

● Security

● Why ssh?

● Analysis of ssh usage scenarios

● Cool things to do with ssh

● Summary

02/20/14 Copyright 2014 Stephen Dum 4

Why do you use ssh

02/20/14 Copyright 2014 Stephen Dum 5

Security

How secure are the machines you use?

Is your desktop machine secure?

Are the machines you need to access secure?

Are the machines physically secure?

02/20/14 Copyright 2014 Stephen Dum 6

Security ...

How secure is it to type in a password everytime
to connect to another machine?

How many people have root access to the
machines you need to access?

To your desktop machine?

What can superusers do to circumvent your
security?

02/20/14 Copyright 2014 Stephen Dum 7

 Security ...

● Trojan horses – modify standard utilities

● Intercept network communication

● Trusted machines

“Trust is inherently Social”

- Bruce Schneider

02/20/14 Copyright 2014 Stephen Dum 8

Features

Security

● Authentication – user identity, server identity,
client identity

● Encryption – network traffic encrypted

● Integrity -- data not modified in transit, no man
in the middle attacks, replay attacks

02/20/14 Copyright 2014 Stephen Dum 9

Facilities

● Convenience

● Remote login

● File copy between machines

● Remote command execution

● Local access to remote services (imap, smtp,
http, …

● Easy access, no need to retype password for
each command.

02/20/14 Copyright 2014 Stephen Dum 10

Facilities

● X11 display forwarding

● Run a specific command on login

● Launch cronjobs – with some care

02/20/14 Copyright 2014 Stephen Dum 11

Asymmetric or public key encryption

You generate a private key and a public key with
ssh-keygen. Private key is usually protected with
a passphrase.

Anyone can encrypt a message with the public
key, but you must know the private key (and
passphrase) to decrypt the message.

These keys are used to authenticate login
attempts on machines. “impossible to crack” –
which means computationally infeasible.

02/20/14 Copyright 2014 Stephen Dum 12

SSH Encryption

Authentication uses asymmetric or public key
encryption.

Network traffic uses symmetric encryption with a
'random' generated key.

02/20/14 Copyright 2014 Stephen Dum 13

SSH Setup

● Every machine you want to access needs your
public key

● Keys in ~/.ssh (on linux) directory must be
protected with mode 600 or 700.

● Private key needed on your 'desktop' machine

● Passphrase – remembered, not stored on
computer

● Never create key pairs with no passphrase. Ok,
never say never, except for a few very special
situations

02/20/14 Copyright 2014 Stephen Dum 14

Assumptions

Your 'desktop' is trusted

02/20/14 Copyright 2014 Stephen Dum 15

Scenario 1

Create a simple connection to a machine

ssh foo.corp.com

xterm -e ssh foo.corp.com

gnome-terminal -e “ssh foo.corp.com”

02/20/14 Copyright 2014 Stephen Dum 16

Prerequisites in Scenario 1

● The ~/.ssh directories must not be readable or
writable by anyone else

● Your public key must be on the remote machine
foo.corp.com and listed in authorized_keys file

● private key is only needed on your local machine

02/20/14 Copyright 2014 Stephen Dum 17

Connection process in Scenario 1

● Exchange pleasantries, ssh version,
capabilities, host key, session key in plain text.

● Negotiate common supported encryption
algorithms

● Client generates and sends symmetric
encryption key encrypted with host and session
key to server

02/20/14 Copyright 2014 Stephen Dum 18

Connection process in Scenario 1

● Client and Server negotiate common supported
protocols, and supported keys.

● Server sends challenge encrypted with user's
public key

● You're prompted for your passphrase to decrypt
the challenge

● User is authenticated

● Communication proceeds.

02/20/14 Copyright 2014 Stephen Dum 19

Security issues

For normal 'other' users of remote machine

● Your public keys are protected, unreadable

● Passphrase – safe other than with a vulcan
mind meld, key loggers, spy cams, inquisitive
eyes

● Private key is not transmitted to the destination
machine, likewise for passphrase

02/20/14 Copyright 2014 Stephen Dum 20

Security against extreme measures

Superuser (on remote machine)

● Can't access your private key from remote
machine,

● Can access your public key

● Can't access your passphrase

Local machine 'trusted' right!

02/20/14 Copyright 2014 Stephen Dum 21

ssh-agent

● Runs on your desktop

● Remembers your passphrases for you

● Set this up once when you login or first need it.

● Agent communicates on a ipc connection, it
doesn't know who or where a request comes
from.

When ssh needs to authenticate a key, it asks the
agent to decrypt the message for it.

02/20/14 Copyright 2014 Stephen Dum 22

ssh-agent

Setup adds 2 environment variables

● SSH_AGENT_PID=2926

● SSH_AUTH_SOCK=/run/user/1000/keyring-
exg3Ld/ssh

Socket is in a directory with 700 permissions so
only you can access it.

02/20/14 Copyright 2014 Stephen Dum 23

ssh-agent security
● Access to agent only allowed by 'you', others

can easily deduce the name of the socket, but
can't access it. (except superuser).

● Openssh agent stores passphrases in plain text
in memory – again others can't access (except
root).

● Root could easily deduce the name of the
socket and use it as to authenticate a
connection (with only minor effort).

● Agent is on your desktop - A trusted machine,
right!

02/20/14 Copyright 2014 Stephen Dum 24

A simple connection with agent
Run ssh-agent, use ssh-add to add your keys and
passphrases.

gnome environment launches a agent for you,
with all your login session processes children of
the agent. Once keys are added, they are
remembered in a password protected vault.

KDE maintains its own password protected vault,
not related to agent. The web provides a number
of reasonably convenient solutions to this.

There is a script 'keychain' available to do this if
all else fails.

02/20/14 Copyright 2014 Stephen Dum 25

A simple connection with agent

Ssh foo.corp.com

Differences in connection process from Scenario 1

● Server sends challenge encrypted with user's
public key

● Client passes it to agent to decrypt, and sends
result back to server for verification

02/20/14 Copyright 2014 Stephen Dum 26

Agent Connection security

● User didn't have to enter passphrase again

● Private key remained on client

● Agent security applies

● Rest of security same as w/o agent

02/20/14 Copyright 2014 Stephen Dum 27

Tunneling

If your 'corporate' network is isolated behind a
firewall, but with a ssh server on the firewall ssh
can make a connection through the firewall
machine to hosts in the private network

ssh fw.corp.com ssh foo.corp.com

Oops! The remote executed ssh we launched on
fw doesn't have access to your agent. So you will
need to type your passphrase again – boo!.

02/20/14 Copyright 2014 Stephen Dum 28

Tunneling continued

ssh -A fw.corp.com ssh foo.corp.com

● The -A tells ssh to setup things so the ssh
running on fw provides a 'agent' which just
presents a tunnel back to the desktop ssh
agent.

● Now the 'ssh foo' proceeds using your desktop
agent to authenticate you.

02/20/14 Copyright 2014 Stephen Dum 29

Tunnel security

The new element here is the tunneling of a ssh-
agent back to your desktop.

User level - As before, agent sockets for ssh are
in a protected directory so no problem.

02/20/14 Copyright 2014 Stephen Dum 30

Tunnel Security superuser

Superuser – root on fw could access the agent
socket to authenticate you. If you forward the
agent it had better be to a trusted machine.
Otherwise, root could use the agent to make a
connection to any other machine you can access.

Root doesn't get access to your passphrase or
private key, but for the duration of the connection,
root could hijack your credentials to make another
connection.

02/20/14 Copyright 2014 Stephen Dum 31

A more secure tunnel

ssh -N -L 2220:foo.corp.com:22 fw.corp.com&

ssh -p 2220 localhost

This also creates a tunneled connection to foo,
without creating an agent on the intermediary
machine – but ties up a port.

Which allows

scp -P 2220 localhost:somefile .

But not

scp -P 2220 localhost:somefile bar.corp.com:somefile

02/20/14 Copyright 2014 Stephen Dum 32

Tunneling socks5

● ssh -N -D 8181 fw.corp.com

● The '-D 8181' has ssh creating a socks server
on fw.corp.com tunneled to localhost port 8181

02/20/14 Copyright 2014 Stephen Dum 33

function FindProxyForURL(url,host) {
 if (isPlainHostName(host)) {
 if (host == "corp1" ||

 host == "corp3") {
 //alert("proxy host");
 return "SOCKS5 localhost:8181";
} else {
 return "DIRECT";

 }
 }
 if (dnsDomainIs(host, ".sw") ||

 dnsDomainIs(host, ".sw.corp") ||
 dnsDomainIs(host, ".sw.corp.com")) {
//alert("proxy domain");

 return "SOCKS5 localhost:8181";
 } else {
 return "DIRECT";
 }
}

02/20/14 Copyright 2014 Stephen Dum 34

Summary

● Security - communications encrypted --
'impossible to crack' – computationally
infeasible or ok short term, but can crack it with
time.

● Integrity – counter measures to prevent
hijacking connection.

● Enter your passphrase once, agent allows it to
be once per desktop login

● Only run agent on your desktop

02/20/14 Copyright 2014 Stephen Dum 35

ssh

For more information:

SSH The Secure Shell, The Definitive Guide,
by Barrett & Silverman, O'reilly

man pages for ssh, scp, sftp, slogin

http://www.openssh.com

Stephen.dum@frontier.com

http://www.openssh.com/

02/20/14 Copyright 2014 Stephen Dum 36

02/20/14 Copyright 2014 Stephen Dum 37

 Please Enter Your Password...

"cabbage"

Sorry, the password must be more than 8
characters.

"boiled cabbage"

Sorry, the password must contain 1 numerical
character.

"1 boiled cabbage"

Sorry, the password cannot have blank spaces.

"50bloodyboiledcabbages"

Sorry, the password must contain at least one
upper case character.

02/20/14 Copyright 2014 Stephen Dum 38

 "50BLOODYboiledcabbages"

Sorry, the password cannot use more than one
upper case character consecutively.

"50BloodyBoiledCabbagesShovedUpYourArse,IfY
ouDon'tGiveMeAccessnow”

Sorry, the password cannot contain punctuation.

“ReallyPissedOff50BloodyBoiledCabbagesShove
dUpYourArseIfYouDontGiveMeAccessnow”

Sorry, that password is already in use.

02/20/14 Copyright 2014 Stephen Dum 39

Passwords and Encryption

● People still use old unix 8 char DES encryption
algorithms, circa 1970 (25 encryption passes)

● Machines a bit faster now, cracking that is
nearly trivial.

● Gnu crypt now supports a number of
algorithms, including sha-512 and a
programmable number of passes default 5000.

02/20/14 Copyright 2014 Stephen Dum 40

http://xkcd.com/936

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

