

Building the next Internet Of Things
device using a Raspberry Pi and simple electronics.

IoT What is “it”

● Yet another buzz word and acronym or is it
more?
– The term started in 1999 by Kevin Asthon but the

concept has been around since the early 90's and
originally revolved around RFID tags and the concept
that if everything had a unique license plate number
it could be tracked and managed by computers.

– As with many terms the meaning has changed over
the years as technology and needs have changed.

IoT Today

● The term Internet of Things (commonly
abbreviated as IoT) today is used to denote the
connectivity of devices, systems and services that
goes beyond the traditional machine to machine
communications and covers a variety of protocols,
domains and applications intended to collect and
distribute information to people as well as
systems and allow these systems to be managed
by machines and people in an efficient secure and
personalized manner.

IoT Today

● So it goes beyond the traditional Internet into
transports like mesh networks, point to point
connections, near field, sonar and more. These
devices can be interacted with or interact with
us in ways that will help us manage the ever
growing volume of information that we are
collecting by having all of these devices
running.

IoT Today

● One example of IoT that few people think about is our
own cell phones. These devices are connected to radio
networks and have GPS or cell tower triangulation built
in that allows them to be used to determine traffic
patterns and congestion. The cameras located on the
freeways in conjunction with the cell phones in the cars
allows the people who can access this information the
ability to show us via the map programs on our phones
where the traffic congestion is on the freeway heping us
decide if we should take a detour or change our trip
plans before we get stuck in a traffic jam.

Challenges
26 smart things for every human on the planet!!

● IoT faces several challenges over the next few
years the biggest I feel are address space, privacy
and security. With an estimated 200 billion devices
in 20201 we will not have enough addresses with
IPv4 so IPv6 will play a big part in the growth of
IoT. With the limits of IPv6 not having any NAT
built into the standard raising privacy issues and
security issues such as Heartbleed I expect IoT
devices will be on the radar with security and
privacy groups frequently in years to come.

1. Sources: IDC, Intel, United Nations

Enough Terms and Stats lets get to how I
can build my own IoT device

● The biggest challenge to anyone who already
has some electrical engineering experience and
who wants to build an IoT device is the Internet
part. To build an embedded device that has a
TCP stack and all of the magnetics and PHY
chips and the complex communication
protocols to talk to these chips it quickly
becomes a massive undertaking.

Enough Terms and Stats lets get to how I
can build my own IoT device

● Sure it has gotten easier with such products as
the WIZnet W5100 where a lot of the protocol
stacks have been obfuscated to allow easy
connecting to your Atmel or Pic project but at
the end of the day you are still limited by what
your Pic or Atmel chip can do with its limited
code space so adding things like encryption
make these solutions limited and costly to
develop.

Enough Terms and Stats lets get to how I
can build my own IoT device

● At the end of the day its also about price. With
the cost of the magnetics and PHY chips your
already looking at $20 in parts and countless
hours of C code to write before you can even
get UDP packet out the door much less a full
TCP session.

A better way

● Leveraging the low cost educational and engineering
tools one can have a full featured Linux or BSD
based IoT device for as little as $40 and then add
your own IP to make your own IoT device.

● These devices are known as credit card sized
computers and all feature expansion or GPIO
headers

Raspberry Pi Beaglebone Black (BBB)

Ya but that GPIO buss looks scary do I need to learn
about PCI bus and read lots of engineering papers?

● It is as easy as 3.1415927......
– The GPIO header on the Pi is the simplest and its

as simple as reading a PIN or talking serial on your
uP.

Ya but that GPIO buss looks scary do I need to learn
about PCI bus and read lots of engineering papers?

● The GPIO header on the BBB is more complex
and has more features but again it can be as
simple as reading and writing to a pin using
Python but does require loading a cape
manager template to configure the pins.

● A big advantage of the BeagleBone Black is
that it also has 7 analog inputs, making it much
easier to connect sensors. The Raspberry Pi
has none and requires an extra analog to digital
convertor chip to read analog sensors.

Comparison Pi vs BBB

BeagleBone Black Raspberry Pi
Base Price 45 40

Processor 1GHz TI Sitara AM3359 ARM Cortex A8 700 MHz ARM1176JZFS

RAM 512 MB DDR3L @ 400 MHz 512 MB SDRAM @ 400 MHz

Storage 2 GB on-board eMMC, MicroSD SD

Video Connections 1 Mini-HDMI 1 HDMI, 1 Composite

Supported Resolutions 1280×1024 (5:4), 1024×768 (4:3), 1280×720
(16:9), 1440×900 (16:10) all at 16 bit

Extensive from 640×350 up to 1920×1200, this
includes 1080p

Audio Stereo over HDMI Stereo over HDMI, Stereo from 3.5 mm jack

Operating Systems Angstrom (Default), Ubuntu, Android, ArchLinux,
Gentoo, Minix, RISC OS, others…

Raspbian (Recommended), Android, ArchLinux,
FreeBSD, Fedora, RISC OS, others…

Power Draw 210-460 mA @ 5V under varying conditions 150-350 mA @ 5V under varying conditions

GPIO Capability 65 Pins (A/D) 8 Pins (NO A/D)

Peripherals 1 USB Host, 1 Mini-USB Client, 1 10/100 Mbps
Ethernet

2 USB Hosts, 1 Micro-USB Power, 1 10/100 Mbps
Ethernet, RPi camera connector

Start with a prototype

● As with all things electronic its best to start with a
prototype and test it out before you build your own PCB.

● The Pi makes this easy with the GPIO header just use
wires and a prototype board and built it on your bench
before you draw it all up.

Prototype tools

Pi Plate Kit

BBB Proto Cape

Xilinx FPGA http://valentfx.com/logi-bone/

Get your Platform up and running

● Raspberry Pi does require a few steps before you can boot the board
and start working.

– The Raspberry Pi makes it very easy to start playing with Linux
and GPIO. First download one of the approved images and install
it onto your flash disk. It is not possible to brick your Pi so don't
worry about that. Once you have your Pi up and running Linux you
can start playing with the GPIO header. I recommend the
Raspbian image it is very stable and easy to add packages.
Because the Pi can only boot from the SD card its very simple but
does require the correct tools to format the SD properly before
you can start the next step.

– http://www.raspberrypi.org/downloads/

●

http://www.raspberrypi.org/downloads/

Get your Platform up and running

BeagleBone Black comes pre-configured with an OS so you can boot it up
and immediately start using the GPIO header

– The BBB is a little more confusing because of the multiple devices it can
boot from but just as impossible to brick. The BBB has a button (S2) that
is designed to tell the ROM stage 1 boot loader to change the order of
devices it looks for its stage 2 loader. If this is pressed it will try to load
from the SPI0, MMC0 (uSD), USB0 and finally UART0. If not pressed the
order is MMC1 (onboard eMMC), MMC0 (uSD), UART0 and finnally
USB0. If it does not detect the necessary MLO file on the file system TOC
or the correct XMODEM control from the UART it will move on to the next
device.

– I recommend erasing the eMMC with 0's or flashing a special MLO that
jumps to the uSD by default as you are developing your IoT to make it
simpler and be assured it will load from the uSD on ever boot.

– Because of the added complexity in the boot process it is recommended
that one get an FTDI TTL serial adapter to watch the boot loader from the
JTAG interface.

BBB Angstrom

● It is Linux but things are a little different than most. It does
not have a traditional syslog daemon but uses one that
writes to a circular binary file and requires journalctl to read
from it. I think this is smarter than syslog for embedded but
another option is to move your syslog folder to a ram disk to
avoid disk corruption or running out of disk space. I have
been looking for other solutions but so far have not found
any I like. On my own Linux distribution UFO I opted for a
ram drive long ago and other than loosing data after reboot I
have never had a corrupt file system or full disk. Also on
Angstrom the package manager is opkg not dpkg or apt-get

Python Fun

● Easy to install on Raspbian just make sure your
system is updated and install the python
module and start talking to the GPIO header.

$ sudo apt-get install python-rpi.GPIO
root@alarmdecoder:/home/pi# python
Python 2.7.3 (default, Mar 18 2014, 05:13:23)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import RPi.GPIO as GPIO
>>> GPIO.setmode(GPIO.BCM) # note below
>>> GPIO.setup(4,GPIO.OUT)
>>> GPIO.output(4,True)
>>> GPIO.output(4,False)

GPIO.BCM Broadcom SOC channel
GPIO.BOARD board GPIO pin # on P1 header

BBB Node.js fun

● The default OS on BBB is Angstrom and this
contains the kitchen sink of tools to begin GPIO
testing mostly based on Node.js

var b = require('bonescript');
var pin = 'P8_12';

b.pinMode(pin, b.OUTPUT);

var toggle = b.HIGH;
setInterval(flashPin, 1000);

function flashPin() {
 console.log("setting pin to %d",toggle);
 b.digitalWrite(pin, Number(toggle));
 toggle = !toggle;
}

Now lets make a PCB

● Lots of people think that this is the hardest part and in some ways it is but I have a few tips
today that will hopefully make it a lot less scary.

– For starts it can be very expensive to make your own PCB

 Some fab shops charge hundreds of dollars to make a simple PCB and that is enough to
stop most enthusiasts or even small companies in their tracks. I would like to remind
everyone that we live in the Silicon Forest and we have lots of hobbyist community leaders
that have made it so that everyone can enjoy working in this field.

If you don't know about DorkbotPDX or Laen and his hard work in building OSH Park
please check them out and support our local hobbyist efforts

 Dorkbotpdx.org
Here you can get a 2 layer PCB with silk layer and mask for as little as $5 per square inch
in as little as 12 days. A comparable local company I wont mention will charge over $100
with no mask or silk layer and as much as $200 for a full feature PCB.

– Mistakes happen I have made plenty especially since I tend to hand draw everything and
don't use any auto routing. I am sure Laen has seen me send what looks like the same
PCB a few times in as many weeks and likely knows a face palm had to happen.

Now lets make a PCB

● Second the tools can be expensive and complicated to use.
– You may have your own tools. Some are free such as Eagle

Freeware but I would like to suggest an open source project called
gEDA

● http://www.geda-project.org/
● You can download a pre done gEDA PCB layout for a Raspberry Pi GPIO

board today from our site at
● http://www.alarmdecoder.com/wiki/index.php/Raspberry_Pi

I can't help with the complicated part but with this existing layout hopefully it will make it a
little easier to get started. I could easily stay on the topic of gEDA for another hour
discussing the many free oss footprint files available and the many quirks I have had to work
with over the years but not today. Maybe another day or even a workshop on using gEDA
would be more appropriate so people can actually work with it directly.

http://www.geda-project.org/
http://www.alarmdecoder.com/wiki/index.php/Raspberry_Pi

Now lets make a PCB

● Your first Pi GPIO IoT board starts here

Now lets make a PCB

● In this example PCB I have connected the
GPIO SPI TX/RX pins that would then be
connected to a PIC or Atmel chip. In order to
use these pins and have access to the port you
only need to disable the Linux serial console
that by default uses these pins as ttyAMA0.
http://www.alarmdecoder.com/wiki/index.php/Raspberry_Pi

Now for the Internet part

● Here is where its all up to you. I chose to keep
my projects open source. Feel free to look at
our projects and contribute to or borrow from for
your own OSS efforts.

● https://github.com/nutechsoftware/ser2sock

● https://github.com/nutechsoftware/alarmdecoder

● https://github.com/nutechsoftware/alarmdecoder-webapp

What next?

● I highly recommend heading out to Oregon Electronics
and your local Dorkbot gathering to find ideas and
parts. Oregon Electronics has Raspberry Pi boards and
lots of sensors as well as components to play with and
Dorkbot is an excellent way to connect with other
hardware hackers in the area.

 www.oregon-electronics.com

 www.dorkbotpdx.org

Don't forget to share your experience and encourage others to
make the next IoT device

Sean Mathews
coder at f34r dot com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

